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A fully turbulent channel flow with smooth and rod-roughened walls has been investi-
gated using hot-wire anemometry and direct numerical simulations (DNS). The mean
flow follows the law of the wall for both surfaces and the velocity defect suggests
that the outer layer is very little affected by the roughness. The Reynolds stresses
appear to be very similar for the two surface geometries outside y ≈ 5k, where k is the
roughness height. A quadrant analysis shows that the structural differences close to
the wall extend somewhat further out. The turbulence structure is further investigated
using stress ratios and the anisotropy tensor, which corroborate the findings from
the Reynolds stresses. Many of the recent investigations on boundary layers seem to
find large differences between smooth and rough wall data in the outer layer also.
A tentative explanation for the apparent dependence on flow type of the surface
roughness effects is given.

1. Introduction
Turbulent flows over smooth surfaces have been studied extensively for a long

time, both experimentally and theoretically. The importance of the wall layer was
convincingly demonstrated experimentally by Kline et al. (1967). With the introduction
of direct numerical simulations (DNS) considerably more detailed information has
become available. Using this research tool, the mechanisms involved in the generation
of self-sustained turbulent motion near the wall are now quite well understood (see
e.g. Jimenez & Moin 1991) and the communication between the inner and outer
layers has been elucidated.

Despite its significant importance in industrial applications, much less knowledge
exists for flows over rough surfaces. In the limit of infinite Reynolds numbers all
real surfaces will behave as rough walls and the details of the wall may significantly
affect the characteristics of the flow. The effect of the modified surface topography on
the mean velocity profile is well documented (see e.g. Townsend 1976, or the review
article by Raupach, Antonia & Rajagopalan 1991). It is commonly assumed that the
wall roughness is a local effect that only affects the inner layer up to a distance of
about 4 to 5 roughness heights. In this roughness sublayer the roughness elements
will interact strongly with the streamwise vortices found near the walls, so the inner
region is expected to be severely modified compared to a smooth wall flow. In the
outer layer, however, the flow is expected to be unaffected by the mechanism that
produces the turbulence in the inner layer and therefore should behave similarly in
rough and smooth wall flows.
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The assumption that the wall effect is limited to a certain number of roughness
element heights leads to the argument that in the fully rough case the inner layer
should be modified from the smooth wall relation

U+ =
1

κ
ln y+ + A (1.1)

to the form

U+ =
1

κ
ln

(
y

k

)
+ B(k+), B(k+) = A − �U+ +

1

κ
ln k+, (1.2)

where U is the mean velocity in the streamwise direction, y is the distance from
the surface and κ is the von Kármán constant. A is the smooth wall constant and
�U+ is the modification of this constant due to roughness effects and is frequently
called the ‘roughness function’. (The + superscript indicates normalization with the
friction velocity uτ =

√
τw/ρ or the viscous length scale ν/uτ , where τw , ν and ρ are

the wall shear stress, kinematic viscosity and density, respectively.) k is a measure of
the roughness length scale, frequently taken as a convenient geometric length relevant
to the roughness elements. A popular alternative is ‘the equivalent sand roughness’
which is the length scale which would produce the same �U+ if the surface were
covered by sieved sand. This has been found to produce the shift

�U+ =
1

κ
ln k+

s + A − C, (1.3)

where C ≈ 8.5 (see e.g. Krogstad, Antonia & Browne 1992).
Only in very rare cases will the surface geometry be defined well by using only one

length scale. Thus it is evident that k is generally not a well-defined flow quantity
and its numerical value is only relevant when comparing flows over geometrically
identical surfaces. However, once �U+ is known, k may be related to the equivalent
sand roughness which is given by

ks

k
=

exp[κ(�U+ − A + C)]

k+
. (1.4)

An obvious difference between (1.1) and (1.2) is that the length scales used to
normalize y in the two cases are fundamentally different. In (1.1) the scale used will
depend on the Reynolds number and streamwise position, while the length scale in
(1.2) is a constant.

The assumption about an outer layer which is unaffected by the wall condition
implies that the velocity defect function

U+
e − U+ =

1

κ
ln

(
y

δ

)
+

2Π

κ
[1 − w(y/δ)] (1.5)

must be the same for rough and smooth walls where w(y/δ) is the velocity wake
function, here defined to be 1 at the outer edge of the layer, where y = δ and U =Ue,
and Π is the wake strength which may vary with x. This assumption was questioned
by Krogstad et al. (1992) in the case of boundary layers, based on the observation
that Π derived from the rough wall layer was considerably higher than that in the
smooth case.

In a zero-pressure-gradient boundary layer the momentum integral equation reduces
to

∂θ

∂x
=

Cf

2
, (1.6)
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where θ is the momentum thickness. With a skin friction coefficient, Cf , which in the
rough case may be 3 to 4 times as high as for a smooth wall layer, it is evident that the
layer growth rate is much higher in the rough case. That implies a higher entrainment
rate, which leads to an increase in Π as suggested by Krogstad et al. (1992). They
therefore conjectured that the communication between the inner and outer layers
over a rough wall must be much stronger than implied by the ‘wall similarity’ hypo-
thesis of Townsend (1976).

However, the experimental evidence that the outer flow is directly modified by
the surface roughness is not conclusive. Tani (1987) analysed a number of rough
wall experiments and found the wake strength to be higher than for a smooth wall.
The same was found by Poggi, Porporato & Ridolfi (2003). Tachie, Bergstrom &
Balachandar (2000), who measured the turbulent boundary layer developing over
rough walls generated by sand grains or a perforated plate, found that Π “varies
significantly with the type of surface roughness”. On the other hand, Song & Eaton
(2002) found the wake strength to be virtually unaffected by the surface condition.
(This has also been stated by other investigators, but in many of these cases a smooth
wall value of Π has been used implicitly in the method of deriving Cf .) So far no
DNS results have been published for rough wall boundary layers, but large-eddy
simulation (LES) data have started to appear (e.g. Lee 2002; Tamura et al. 2003).

The Achilles heel of boundary layer experiments on rough surfaces has been the
accurate determination of uτ (see e.g. Krogstad et al. 1992). In most cases uτ has
been determined by a profile matching technique, which has proven very accurate
for smooth surfaces. However, in the rough wall case the uncertainty is much higher,
since both the exact location of the surface and the roughness function �U+ are
also unknown. Therefore the uncertainty about the effects of surface roughness may
partly be due to inaccurate determination of uτ .

In channel flows, on the other hand, uτ may be obtained quite accurately since
it is directly linked to the streamwise pressure gradient which is relatively easy to
measure. Studies of roughness effects in channel flows may therefore help reduce the
uncertainty in the results and thus enable firmer conclusions to be drawn. However,
in the channel flow the conditions are somewhat different than for the boundary
layer. There is no entrainment into the outer layer and the flow is always driven
by a favourable pressure gradient. Both these circumstances lead to a reduced wake
strength in the outer layer. Therefore there is little possibility for the velocity defect
profiles to be different in the rough and smooth wall cases. Coupled to the fact that
the shear stress distribution over most of the channel is directly linked to the pressure
drop, the turbulent production (properly normalized) cannot be very different in the
outer layers of smooth and rough wall channel flows. Also, the outer layer length scale
(i.e. the channel half-height, h) is constant and the friction coefficient is independent
of position in both the smooth and rough wall cases (assuming fully developed flow),
so both the length scale ratios h/k and h+ =huτ/ν are independent of streamwise
position. Therefore a streamwise equilibrium exists in both cases in the channel flow.
This is not the case for boundary layers, where the thickness, δ, grows downstream.
In the rough case Cf is virtually constant while over a smooth wall it decreases
downstream. The scale ratio δ+ will therefore develop differently along the two walls
and an equilibrium type of flow will in general not exist in a boundary layer (although
Smalley, Antonia & Djenidi 2001 have shown that the rough wall boundary layer
ought to be a better candidate for similarity than the smooth wall case).

These two distinguishing features between boundary layers and channel flows (i.e.
lower importance of the wake in the channel flow and difference in streamwise
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development of inner scales) suggest that internal and external flows over rough walls
may behave differently.

Fully developed flow in rough wall channels has recently been investigated by
means of DNS. An attractive feature of this flow configuration from a computational
point of view is that periodic boundary conditions can be used in the streamwise and
spanwise directions. In the pioneering study of Miyake, Tsujimoto & Agata (2000),
sand-grain roughness was represented by simplified roughness elements on one of the
channel walls. Shortly thereafter, DNS of turbulent channel flow with transverse bar
roughness were performed by Miyake, Tsujimoto & Masaru (2001), Ikeda & Durbin
(2002), Leonardi et al. (2003, 2004) and Nagano, Hatori & Houra (2004). Leonardi
et al. (2003) considered square-bar roughness with a wide range of pitch-to-height
ratios, whereas Nagano et al. (2004) also studied rectangular rods 2 and 4 times wider
than their height k. Ikeda & Durbin (2002) performed DNS of a configuration with
uneven rod height.

A common feature of all these simulations was that only one of the channel walls
was roughened while the other wall remained smooth. In some of these studies the one-
sided roughness was partly motivated by the laboratory experiments of Hanjalic &
Launder (1972), in which intentionally only one channel wall was roughened in order
to produce an asymmetric mean flow field. Another characteristic of these DNS
studies is that the roughness elements are relatively high, typically between 10% and
20% of the channel half-height, h, i.e. the blockage effect is substantial. According to
Jimenez (2004), however, the channel half-height should be at least 40 k in order to
eliminate the direct effect of the roughness elements on the outer flow. This suggests
that k should not exceed 2.5% of h.

The present paper reports on a combined experimental and computational inves-
tigation in which laboratory measurements and DNS data obtained from the same
rough channel configuration are examined. In this study both walls are roughened
by means of equally spaced square rods. The symmetry of the channel configuration
makes the mean velocity field and the turbulence statistics symmetric and these
symmetry properties may serve as a valuable check on the experimental and numerical
data. Also, there is no ambiguity about the friction velocity to be used for scaling, since
it is the same on both walls. Another distinguishing feature of the flow configuration
to be considered is that the blockage effect is relatively small since the height of the
roughness elements is only 3.4% of the channel half-height, i.e. smaller by a factor of
3 than in the earlier DNS of rod-roughened channel flow.

The outline of the paper is as follows. The flow configuration is described in the
next section, together with some basic definitions and equations. Experimental and
numerical aspects are presented in § § 3 and 4, respectively. Section 5 presents a com-
parison of the mean velocity profiles and turbulent stresses obtained in smooth and
rough wall channels. In § 6 the effect on the turbulence structure is investigated in
more detail using quadrant analysis and anisotropy invariants. The main conclusions
of this comparative study are provided in § 7.

2. Channel flow configuration
Laboratory experiments and computer simulations were conducted for pressure-

driven flow in a plane channel. The top and the bottom walls were both equipped with
transverse square rods of height k in a non-staggered arrangement. The centreline
distance between two neighbouring rods was p, as indicated in figure 1. This flow
configuration therefore exhibits three different geometrical length scales: h, k and p. In
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Figure 1. Channel definitions.

the present study the particular case h/k = 29.4 and p/k = 8.0 is considered. With the
computer resources available this h/k ratio was the closest to the recommendations
of Jimenez (2004) that could be obtained. A pitch-to-height ratio of p/k =8 was
chosen because it is known to cause the largest effect (i.e. shift �U+) on the mean
velocity profile (1.2) according to the boundary layer experiments of Furuya, Miyata &
Fujita (1976) and the more recent channel simulations by Leonardi et al. (2003).

The turbulent flow of a Newtonian fluid with constant properties (ρ and µ) is gov-
erned by the incompressible Navier–Stokes equations and mass conservation. Whereas
the instantaneous velocity vector ũ = (ũ, ṽ, w̃) and pressure p̃ are intrinsically time-
dependent and three-dimensional, the corresponding Reynolds-averaged fields U =
(U, V, 0) and P are steady and two-dimensional since the flow is statistically homo-
geneous both in time and in the spanwise z-direction.

The flow is driven solely by an imposed (negative) mean pressure gradient �P/�x

in the streamwise direction (see figure 1) from which the characteristic velocity scale
uτ is defined:

u2
τ = −h

ρ

�P

�x
. (2.1)

It should be emphasized that �P/�x is required to overcome both the viscous
shear and the form drag, i.e. the entire flow resistance. Moreover, unlike in turbulent
boundary layers (cf. § 1), uτ as defined in (2.1) does not vary with x except for the
rod-induced periodic variations.

The equation governing mean streamwise momentum ρU can now be expressed in
dimensionless form as

∂

∂x+

(
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+
∂
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)
+

∂
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((
∂U+
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+
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∂x+

)
− u+v+

)
, (2.2)

where the overbar denotes time averaging.
In the absence of roughness elements, i.e. in a smooth channel, V + = 0 and the

dependent variables become independent of x. Thus, (2.2) simplifies to

0 = Re−1
τ +

d

dy+

(
dU+

dy+
− u+v+

)
, (2.3)
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where Reτ = uτh/ν. In the rough wall case considered herein, the flow is fully developed
in the streamwise direction in the sense that the dependent variables in (2.2) exhibit
a quasi-periodic variation in the x-direction with periodicity p. By averaging (2.2) in
x we obtain

0 = Re−1
τ +

d

dy+

(
d〈U+〉
dy+

− 〈u+v+〉 − 〈U+V +〉
)

, (2.4)

where the angle brackets 〈 〉 denote streamwise averaging. Here, −〈U+V +〉 represents
the vertical transport of mean streamwise momentum ρU caused by the roughness
elements. If (2.4) is integrated from an arbitrary position y+ to the channel centre h+

(notice that h+ = Reτ ), we obtain a linear variation

d〈U+〉
dy+

− 〈u+v+〉 − 〈U+V +〉 = 1 − y+

h+
. (2.5)

The contributions to the apparent shear on the left-hand side of (2.5) are the viscous
and the turbulent shear stresses, and the momentum loss influence caused by the
periodic mean flow variation. Thus, outside the region where the impact of the rough-
ness elements on the mean flow field is felt, the sum of the viscous and turbulent
stresses varies linearly with y+, as in a smooth channel.

The fully developed flow in a rod-roughened channel is a three-parameter problem.
Here, the length scale ratios h/k and p/k are identical in the experiments and the
computations. Ideally, the third parameter Reτ should also have been the same.
However, to ensure sufficient accuracy, the Reynolds number could not be lower than
about 600 in the laboratory study (see § 3) while Reτ could not exceed 400 in the DNS
(see § 4). Moser, Kim & Mansour (1999) showed that some low-Re effects still remain
in this Reynolds number range and such effects have been further addressed by Abe,
Kawamura & Matsuo (2001). To facilitate sound interpretations of the rough wall
data with respect to possible Reτ effects between the experiment and the DNS, the
smooth channel data of Moser et al. (1999) for Reτ = 590 are also provided.

3. Experimental details
Measurements were performed in a closed return wind tunnel with a working

section consisting of two parallel plates forming a rectangular channel. The test
section was 5 m long, with an inlet area of 1.35 m × 0.10 m. Measurements of velocity
profiles at several spanwise locations were performed to verify that the aspect ratio
was sufficiently large for the mean flow to be two-dimensional.

The flows along the ceiling and floor were tripped at the inlet using a 3 mm diameter
rod followed by a 12 cm strip of No. 40 grit sandpaper, both spanning the width of
the section. In the case of the rough surface, the ceiling and floor were covered with
square bars k × k =1.7 × 1.7 mm2 spanning the whole width of the section.

A low-velocity calibration jet was used for the calibration of the hot wires. The
reference velocity is determined from the pressure difference across an internal nozzle
creating a large pressure drop even for low velocities. The nozzle is followed by several
screens and a long diffusor of area ratio 11:1. The probe is placed and calibrated
at the exit. The round jet produces a top-hat velocity profile with low turbulence
intensity. The calibration rig was positioned on top of the channel and adjusted
so that the jet flow was coaxial with the channel flow. A high-precision computer
controlled traversing system was used for calibration and measurements. This system
also enabled movement of the probes between the calibration rig and the channel
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flow, so that the probes were never removed from the probe support or disconnected
from the anemometer when shifting it between the calibration rig and the test
section.

The hot wires were in-house-made single- and X-wire probes (using different
probe designs for UV- and UW-measurements). The wires were partly etched 2.5 µm
Wollaston Pt–10%Rh wire with an active length, lw , of about 0.5 mm. The length to
diameter ratio was thus close to 200 and the included angle of the two wires was
nominally 100◦. The separation between the wires was approximately the same as the
active wire length.

The X-wires were calibrated using a velocity-dependent effective angle method. The
method has the same benefits as a full velocity vs. yaw-angle calibration routine, but
requires considerably less effort. The response of the wire is assumed to be of the
form

Ueff = S cos(α + γeff), (3.1)

where S is the norm of the velocity vector, α is the local flow angle and γeff is
the effective wire inclination to the probe axis. This angle is normally taken to be
a constant given by the probe geometry only. However, this has been shown not
to be the case for very low velocities (see Bakken & Krogstad 2004). The probe is
first calibrated for velocity with the probe aligned with the flow and a fourth-order
polynomial is fitted to the velocity vs. voltage data. The probe is then calibrated for
yaw sensitivity at a number of reference velocities covering the entire measurement
range and a curve fit of γeff vs. S is made. During data reduction the velocity-
dependent effective angle is determined on a sample-by-sample basis and the system
of equations must be solved iteratively. Full details of this method may be found in
Bakken & Krogstad (2004).

The hot wires were operated with in-house-made constant-temperature anemo-
meters at an overheat ratio of 1.5. The filter frequencies of the low-pass filter, (fcut, rod =
1.5 kHz and fcut, smooth = 2.5 kHz) were adjusted after spectral investigation to match
the highest Kolmogorov frequencies in the flows. About 6 × 105 samples were acquired
to a PC using a National Instruments 16-bit A/D converter at sampling frequencies
twice the cut-off frequencies. The temperatures in the calibration facility and in the
wind tunnel were constantly monitored using thermocouples. The effect of temperature
drift was corrected for using the method of Bearman (1971).

The dissipation rate, ε, was estimated using single wires assuming local isotropy and
Taylor’s hypothesis. The Kolmogorov length scale, η = (ν3/ε)1/4, varied from about
0.20 mm close to the wall to about 0.42 mm at the centreline in the smooth case,
giving (lw/η)max ≈ 2.5. In the rough case the variation was from about 0.24 mm to
about 0.47 mm, so that (lw/η)max ≈ 2.1. Hence the data are assumed to be very little
affected by probe resolution errors.

Determination of the friction velocity, uτ , is usually straightforward in a channel
flow using the mean pressure gradient (see (2.1)). In this study, the pressure drop was
only of the order of 4 Pa for the whole length of the channel. Measurement uncer-
tainties in this pressure range were too high to obtain reliable estimates of dP/dx.
In the smooth case uτ was estimated from the mean velocity profiles by matching
the data to the DNS of Moser et al. (1999). A second independent estimate for uτ

was obtained from the linear part of the total shear stress profiles in (2.5) using
the X-wire data. The two methods agreed to within about 1%. For the smooth wall
single- and UW-wire measurements, estimates of uτ could only be obtained from the
mean velocity profiles. A very good collapse of the u+2 profiles from measurements
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using the three different probes was observed in the smooth case for y/h> 0.2. The
small difference found closer to the wall was due to differences in spatial resolution.
Due to the unknown shift in the mean velocity profile in the rough case, the friction
velocity could not be estimated from the mean velocity profile. Therefore, uτ had to
be deduced from the total shear stress profile, assuming the accuracy to be the same
as in the smooth case. For the rough wall single- and UW-wire measurements uτ was
determined by matching the outer layer u+2 data to the profiles obtained with the
UV-probe. Using these procedures the uncertainty in uτ was estimated to be less than
±4%.

4. Numerical procedure
A direct numerical simulation of turbulent flow in a plane channel was performed.

The pitch-to-height ratio and the relative roughness height were exactly as in the
accompanying laboratory study (see § 3). The fully developed flow was driven by a
prescribed pressure gradient so that the Reynolds number Reτ based on the friction
velocity defined in (2.1) was 400.

4.1. Numerical method

The spatial and temporal evolutions of the turbulent flow field are completely
described by mass continuity and the incompressible Navier–Stokes equations. The
governing equations are solved using an explicit version of the fractional-step method
proposed by Chorin (1968) on a staggered Cartesian non-uniform grid in which the
pressure, p̃, is defined at the centre of each grid cell and the components of the
velocity vector ũ at the interfaces of the grid cells. Velocity components and their
derivatives, which have to be determined at locations between the corresponding
locations of the former, are obtained by linear interpolation and central differences,
respectively. As a result, the spatial discretization is of second-order accuracy.

Using a leapfrog scheme for the explicit time integration of the momentum equation
(with a time-lagged diffusion term), a second-order accuracy in time is achieved by

ũn+1 = ũn−1 + 2�t

[
N (ũn) +

1

Re
∇2ũn−1 − ∇( p̃n+1)

]
, (4.1)

where N (ũn) denotes the nonlinear terms. The pressure at the new time level p̃ n+1 =
p̃n + �p̃n+1 is determined by the solution of the Poisson equation

∇2(�p̃n+1) =
1

2�t
∇ · ũ∗, (4.2)

where ũ∗ is an intermediate velocity field, calculated by omitting the pressure term in
(4.1). A divergence-free field ũn+1 is obtained after a velocity correction

ũn+1 = ũ∗ − 2�t∇(�p̃n+1). (4.3)

The combination of central interpolation and a leapfrog time-step is energy conserv-
ing for the one-dimensional convection equation. This is the reason why it is especially
suited for DNS. In combination with the diffusion operator, however, the leapfrog
time-step is slightly unstable. Therefore, the diffusive term is taken at the time level
n − 1 in (4.1). Every 41 time steps, an averaging step is performed in order to prevent
2�t oscillations inherent in the leapfrog time advancement. The Poisson equation (4.2)
is solved by an iterative procedure accelerated by a multi-grid cycle. The smoother
(single-grid iteration) is based on the velocity–pressure iteration presented by Hirt
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et al. (1975) with over-relaxation. This scheme gives the same convergence properties
as a conventional Gauss–Seidel iteration with successive over-relaxation (SOR). The
advantage of the present algorithm is the easy treatment of boundaries, at which
only velocity boundary conditions have to be specified. This has proven useful in
simulating flow fields in arbitrary geometries with an immersed boundary method in
Cartesian grids (Tremblay, Manhart & Friedrich 2001). The described procedure also
has the advantage that during the iterations, full control over the residual divergence
of the velocity field is obtained.

4.2. Computational domain and resolution

The length Lx and the width Lz of the computational domain were 6.528 h and πh,
respectively, i.e. essentially the same as in the smooth channel DNS at Reτ =395 by
Moser et al. (1999) and Abe et al. (2001). Alternatively, the length of the computational
box can be expressed in terms of the roughness characteristics, i.e. Lx =24p = 192k.
Thus, the domain comprised 24 rods on each side of the channel. No-slip and imper-
meability conditions were imposed on the channel walls and on the faces of the square
rods. The computational domain was believed to be sufficiently large so that periodic
boundary conditions could be used both in the streamwise and spanwise directions.

A uniform distribution of grid points was used both in the streamwise and spanwise
directions. In order to achieve an adequate resolution in the vicinity of the rods, �x+

was only 3.4 in wall units. In the innermost wall region, i.e. within y < 3k, a uniform
grid spacing with �y+ = 0.5�x+ = 1.7 was used also in the wall-normal direction.
Thus, the innermost node in which the streamwise velocity component was evaluated
was located only 0.85 wall units away from the surface. Moreover, three nodes were
located inside the viscous sublayer, as recommended by Grötzbach (1983) to ensure
sufficient wall-normal resolution. Beyond y = 3k, �y+ was gradually increased towards
the centre of the channel. The mean grid width �= (�x�y�z)1/3 therefore increases
monotonically from the near-wall region towards the mid-plane of the channel where
�+ ≈ 7.5. On the basis of the energy dissipation rate the Kolmogorov length scale
can be estimated to be η+ = 2.5. The criterion �< πη for sufficient grid resolution
suggested by Grötzbach (1983) is therefore fulfilled. Similarly, the Kolmogorov time
scale τ can be estimated to be about 6 viscous time units ν/u2

τ , whereas the time step
�t used in the simulations corresponded to �t+ = 0.16 	 τ+. This tiny time step was
chosen to avoid numerical instabilities (Orellano & Wengle 2000) which may arise
from the explicit time integration scheme employed.

4.3. Initialization, data sampling and verification

A three-dimensional initial flow field was obtained from a very-large-eddy simulation
(VLES) of smooth channel flow with Reτ =400. The mean velocity, however, was
adjusted to the appropriate rough wall levels. This VLES was based on the most
energetic POD modes deduced from an earlier large-eddy simulation. Small-scale
modes were randomly imposed to ensure some energy in the high-wavenumber part of
the spectrum (see Johansson & Andersson 2004 for details). In the presence of rods the
DNS was first advanced forward in time until a realistic turbulent flow field evolved
after a time corresponding to 2 h/uτ and a statistically steady state was reached
3 h/uτ later. The simulation continued for another 20 h/uτ , during which statistics were
computed from individual flow fields equally separated 0.5 h/uτ or 200 viscous units in
time. In addition to averaging over these 40 nearly independent flow fields, averaging
was also performed in the homogeneous spanwise direction. Since the roughness
elements induced a streamwise periodicity of the averaged field, the statistical equi-
valence of two points (x, y, z) and (x + np, y, z), where p is the pitch and n is
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an integer, was utilized to further increase the number of statistically independent
samples. To further increase the number of samples, averaging over both sides of the
channel was also carried out, thus benefiting from the geometrical symmetry of the
rod-roughened channel.

For comparative purposes a DNS of smooth channel flow also at Reτ = 400 was
performed. The computations were carried out using 256 × 192 × 192 grid points in a
computational box of size (Lx, Ly, Lz) = (6.528h, 2h, πh). The grid was uniform in the
stream- and spanwise directions with resolutions �+

x ≈ 9.8 and �+
z = 6.5, respectively.

The first computational grid point was located at y+
1 = 0.7 from the bottom wall. The

computational characteristics were nearly the same as for the rough wall DNS, except
that the grid spacing in the streamwise direction was larger than in the presence of
the rods. The outcome of this simulation was compared with results of Abe et al.
(2001) for Reτ = 395. The size of their computational box was practically the same
as in the present case and their second-order finite-difference code was similar to the
MGLET code used herein. The agreement between the present turbulence statistics
and those of Abe et al. (2001) was generally very good (see Ashrafian & Andersson
2004).

5. Results
The smooth wall experiment was performed at Reτ =670, corresponding to a bulk

Reynolds number of Reb = Ubh/ν = 12800 (where Ub is the average velocity measured
across the channel exit). Since we were unable to run our code at this Reynolds
number, the DNS smooth wall reference used is the Reτ = 590, Reb = 10700 simulation
of Moser et al. (1999). For the flow in the rough wall channel the Reynolds numbers
were Reτ = 600 and Reb = 6000 for the experiment and Reτ = 400 and Reb =4200 in
the DNS. Our own smooth wall DNS at Reτ = 400, Reb =6300 has also been included
as reference for the rough wall DNS and to help estimate the Reynolds number effects
expected between the rough wall DNS and experiment.

The relatively high value of h/k gave a roughness height, k+ (i.e. in terms of the
viscous length scale ν/uτ ) of k+ =13.6 for the DNS and k+ = 20.4 in the experiment.
From the estimated �U+ (see below) the equivalent sand roughnesses could be
calculated from (1.4). For the DNS k+

s was found to be k+
s =63, while the experiment

gave k+
s = 121. As a rule-of-thumb it is frequently assumed (see e.g. Raupach et al.

1991) that k+
s needs to be higher than about 70 for the flow to be considered fully

rough, i.e. where the viscous shear at the wall may be neglected compared to the form
drag produced by the roughness elements. Thus the DNS surface is transitionally
rough while the experiment is conducted in the fully rough regime. However, just
as the buffer layer matches asymptotically with the logarithmic region on a smooth
surface at y+ of about 70, the viscous effects disappear gradually as k+

s increases. This
is clearly seen in the transitionally rough part of the Moody diagram. It is therefore
believed that the effects of the transitional roughness in the DNS compared to a fully
rough simulation must be quite small. This is further supported by the computed
contributions to the surface drag from the pressure and viscous forces. The ratio was
found to be close to 200 (Ashrafian, Andersson & Manhart 2004), implying that the
DNS is also close to being in the fully rough regime.

5.1. Mean velocity

The mean velocity measured in the smooth wall channel (Reτ = 670) is plotted in inner
variables in figure 2 together with the DNS data of Moser et al. (1999) at Reτ =590
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Figure 2. Mean velocity profiles. ——–, Smooth channel DNS at Reτ = 590 (Moser et al.
1999); –·–·–, smooth channel DNS at Reτ = 400; �, smooth channel experiment at Reτ = 670;
– – –, rough wall DNS at Reτ = 400; �, rough wall experiment at Reτ = 600. A solid line is
used for comparison of the rough wall experiment with the log-law (1.1).

and the present smooth wall DNS data (Reτ =400). The differences are seen to be
very small. For y+ < 5 the usual effect of the wall on the hot wire is seen as an
increasing overestimate of U+ as the wall is approached.

The mean velocity profiles above the crest of the roughness elements are also shown
in figure 2. For the DNS the Reτ is again 400, but for the experiment the lowest
acceptable operating speed gave Reτ = 600. In all figures the distance is measured from
the wall between the ribs (as indicated in figure 1). Figure 2 shows that in the case of
rib-roughened surfaces, the flow exhibits a well-defined logarithmic layer using this
reference position. This was also observed by Cui, Patel & Lin (2003) in their LES.

The wall roughness causes an increase in surface friction. The friction factor,

f =
8τw

ρU 2
b

= 8

(
uτ

Ub

)2

,

was found to be f =0.073 for the DNS and f =0.079 in the experiment, respectively.
This difference is well within the estimated uncertainty of uτ . In a fully rough flow,
f is expected to depend very little on the flow Reynolds number and the somewhat
lower value of the DNS friction factor reflects a k+ in the upper end of the transitional
regime. The downward shift, �U+, in the logarithmic part of the velocity distribution,
(1.2), was found to be �U+ =7.1 in the DNS, while the experiment gave �U+ =8.7.
The difference is due to the differences in Reτ . If the flow is in the fully rough regime,
the shift should follow the relation

�U+ =
1

κ
ln k+ + const. (5.1)



338 P.-Å. Krogstad, H. I. Andersson, O. M. Bakken and A. Ashrafian

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

5

10

15

y/h

U
C

L
 –

 U
+

+

Figure 3. Velocity defect profiles. Symbols as in figure 2.

Assuming f to be independent of Reτ , the experimental value of �U+ at the Reτ of
the DNS would have been �U+ = 7.4. This very small difference is again reflected
by the k+

DNS being in the upper part of the transitional regime. As conjectured in
§ 1, the velocity defect function was found to be virtually insensitive to the surface
roughness (figure 3). Within the experimental scatter the smooth wall DNS and the
measurements produce the same velocity defect. The rough wall DNS and measured
velocity defects also agree well with the smooth wall data. Only very close to the crest
of the roughness element may a small deviation from the smooth wall distribution be
seen. This indicates that the effect of the roughness element on the velocity defect is
limited to y/h � 0.04, which is only slightly above the crest of the roughness element.

Due to the errors introduced in the hot-wire measurements from the high turbulence
level found near the cavity, no attempt was made to measure the mean velocity
profile at places other than above the crest of the roughness element. The DNS
shows that above y/h> 0.17 the mean velocity profiles are virtually independent of
streamwise position (Ashrafian et al. 2004). However, below this limit the velocity
is varying rapidly with distance from the wall and streamwise position, making the
measurements close to the wall prone to positioning errors as well.

5.2. Reynolds stresses

Figure 4 shows that the measurement technique used was capable of reproducing
the smooth wall streamwise normal stress, u+2, very well. The peak was found to be
near y+ ≈ 15 in the experiment and is slightly underestimated, but for most of the
cross-section the DNS and hot-wire data collapse. (The small shift in the location of
the stress peak to lower y/h in the experiment is due to the difference in Reτ .)

In the rough case the peak in u+2 is considerably reduced due to the break-up of
the streamwise vortices. This has also been observed by other investigators (e.g. in
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Figure 4. Streamwise normal stress profiles, u+2. Symbols as in figure 2.

the experiments of Grass 1971, Andreopoulos & Bradshaw 1981, Krogstad & Antonia
1999 and in the DNS of Miyake et al. 2000). The reduction observed in the
experimental data appears to be overestimated compared to the DNS. This was
shown by Bakken & Krogstad (2005) to be a Reynolds number effect, and they found
that all traces of the near-wall peak were absent at Reτ =1200. In the smooth case, the
peak is mainly due to viscous effects. For the fully rough case, the pressure-induced
drag completely dominates the drag, leaving no region of viscous influence near the
wall. With the DNS in the transitional regime, the near-wall flow will be affected
only to a small degree by viscous drag, resulting in a strongly reduced peak value.
The small peak very close to the wall is caused by a region of local separation right
above the roughness element. The u+2 profile also suggests that the roughness effect is
quite local, extending only out to y/h ≈ 0.2, which corresponds to about 6 roughness
heights. These data therefore seem to support the ‘wall similarity’ hypothesis.

The surface roughness is also expected to severely affect the wall normal stress,
v+2, due to the reduced damping effect near the wall. Krogstad & Antonia (1999)
claim that the effect depends strongly on the wall geometry, suggesting that two-
dimensional roughnesses such as spanwise rods have a much stronger effect on v+2

than a random three-dimensional geometry. In their investigation of a boundary layer
with rod roughness, it was found that v+2 was strongly reduced near the wall, but
they also observed a significant increase in the outer layer. In the present experimental
data a reduction in v+2 up to y/h ≈ 0.2 is observed in the measurements and the
effect appears to extend even further out in the DNS (figure 5). The increased level
of the smooth wall v+2 for the experiments compared to the DNS for y/h< 0.1 is
due to problems of the hot wire measuring v correctly near the wall. However, in the
outer layer the similarity in the experimental data is very good and a small decrease
is found in the DNS data. Hence a possible increase in v+2 in the outer layer appears
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Figure 5. Wall-normal stress profiles, v+2. Symbols as in figure 2.

to be a phenomenon that is unique to boundary layers and is not verified for the
channel flow. It should also be mentioned that the rough wall channel flow DNS
of Miyake et al. (2000) (Reτ = 150) indicates that v+2 is virtually unaffected by the
roughness throughout the layer.

The spanwise normal stress, w+2, is shown in figure 6. This stress is clearly over-
estimated close to the wall in the experiment compared to the DNS. This is a well-
known phenomenon when using a probe configuration with one wire on top of the
other. The effect of the roughness seems to be very small and is only apparent as a
small dip and peak in the experimental data right above the roughness element. This
trend is also evident in the DNS. Further out the collapse of both the experimental
and DNS data is very good.

Again, the available DNS do not appear to give a unique trend. The DNS of
Leonardi et al. (2004) indicates a substantial increase in the plane-averaged w+2

above the plane of the ribs. The increase in peak value for the geometry used in that
investigation was of the order of 20%. This is significantly higher than what is found
in the present DNS. (However, as noted in § 1, their k/h ratio is much higher than
the criterion of Jimenez 2004). The DNS of Miyake et al. (2000), however, indicates
a reduction of about 7% in the peak value of w+2 for sand grain roughness.

The shear stress profiles above the crests of the roughness elements are shown
in figure 7. As expected, the data collapse onto a straight line in the outer layer
irrespective of the surface condition, consistent with (2.5). Due to the increased turbu-
lence intensity over the rough surface, the peak in the measured −u+v+ is likely to
be underestimated in the rough case. This explains why the roughness effect appears
to extend further out from the wall in the experiment than in the DNS.
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Figure 6. Spanwise stress profiles, w+2. Symbols as in figure 2.

6. Roughness effects on the turbulent structure
In order to study the structural effects of the surface roughness on the flow in more

detail, a quadrant analysis and a study of the anisotropy tensor are undertaken. These
methods were chosen since they are equally well adapted to analyse experimental and
DNS data. The quadrant analysis is capable of providing information about changes
in the turbulent flow pattern due to the modified wall boundary condition, while
the anisotropy analysis will give information about how the interaction between the
stresses in the flow may have been affected.

6.1. Quadrant analysis

Quadrant analysis has proven to be a convenient tool to extract information about
changes in turbulent structure when comparing turbulent flows. By sorting the
turbulent events into the various quadrants of the (u, v)-plane, statistical information
about the flow patterns may be educed. The most important events are the ejections
(Q2) and sweeps (Q4) which are events occurring in the second and fourth quadrants
respectively. For smooth wall flows, the ejection events draw fluid from the low-speed
streaky structures embedded in the viscous sublayer and transport it to the outer layer.
Even though the streaks must be considerably modified by the roughness elements,
the flow visualizations of Grass (1971) for gravel type surface roughness clearly
show the existence of ejections and sweeps previously identified with the smooth wall
‘bursting process’ in the rough wall case also. Grass noted that over rough walls the
ejections could be very violent, with ejected fluid “rising almost vertically from the
interstices between the roughness elements”. He also observed that the ejections were
often coherent over much of the layer. In contrast, sweep motions were confined to
the region close to the wall. Hence it appears that much of the mixing properties in
a turbulent wall flow should be independent of the surface condition.
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Figure 7. Shear stress profiles, −u+v+. Symbols as in figure 2.

The u, v quadrant decomposition technique has been effective for assessing the
importance of the visually observed ejections and sweeps in the wall region. Here
we will use the technique to further elucidate the region directly affected by the
roughness elements. Using Lu & Willmarth’s (1973) concept of a hyperbolic hole of
size H , defined by | uv | = Hu′v′ (a prime denotes an r.m.s. value), the contribution
to uv from a particular quadrant can be written as

(uv)Q = lim
T →∞

1

T

∫ T

0

uv I (t) dt, (6.1)

where I2 is an indicator function defined so that

I (t) =

{
1 when | uv |Q � Hu′v′

0 otherwise.

Here the velocity vector used to compute (uv)Q is assumed to be a function of time
only, as will be the case for the signals from a hot-wire probe.

For a DNS database the velocity vectors are available as a spatially distributed
function for a limited number, Nt , of realizations separated in time. Assuming that
the turbulent quantities are periodic in the streamwise direction and homogeneous in
the spanwise direction, the quadrant decomposition for the DNS data base may be
written

(uv)Q =
1

Nt Nsp Nper

Nt∑
i=1

Nsp∑
j=1

Nper∑
k=1

uvIi,j,k, (6.2)

where Nsp is the number of grid points in the spanwise direction and Nper is the
number of periodic elements in the simulation domain. Ii,j,k has the same definition
as in the temporal case.
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Figure 8. Contributions to the quadrants: H = 0. (a) Q1, (b) Q2, (c) Q3, (d) Q4.
Symbols as in figure 2.

In general, it is difficult to compare structural information between DNS and hot-
wire data, since the spatial averaging performed using (6.2) in the case of DNS will
be different from the temporal averaged data obtained from the hot wire using (6.1).
However, when H = 0, the two processes will be equivalent, since all data will be used
in both cases. Hence, a quadrant analysis comparison between the DNS and experi-
mental data will be shown for H = 0 only. (The data will be presented as the percen-
tage contribution to uv from each quadrant, i.e. as FQ =100% × (uv)Q/uv, since this
does not carry any inaccuracy in the selection of a scaling variable, such as uτ etc.)

The percentage contributions to −uv from Q1 measured above the crest of the
roughness elements are shown in figure 8(a). The contribution is always negative,
since uv is negative in the measurement region. As expected from the shear stress
profiles, the smooth wall experimental data follow the DNS distribution well, except
very close to the surface, where the hot-wire data fail to pick up the small peak. As
discussed previously, this is due to problems of the hot wire measuring v correctly
near the wall.

The measured rough wall distribution follows that of the smooth wall very well
in the outer layer. Right above the roughness elements a shift in the distribution
away from the wall of about 1 to 2 roughness heights is observed. The roughness
effects are more pronounced in the DNS, where a general reduction in the outer
layer is also found. Comparing figure 8(a) to figures 4 and 5, it is evident that this
reduction is linked to the much stronger reduction in v+2 picked up by the DNS than
in the experiment. The smooth wall minimum near y/h ≈ 0.03 is maintained in the
rough wall DNS, but shifted outwards 1 to 2 roughness heights. The quadrant analysis
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results from the DNS of Leonardi (2002) show the same outward shift of the near-wall
peak and a reduction further out, corroborating the present DNS results. His results
suggest a peak contribution right above the roughness element of 140%, which is
significantly stronger than the value found here.

The distributions for the more important ejection events (Q2) are shown in fig-
ure 8(b). The outer layer is very little affected by the roughness, but a distinct near-
wall reduction in Q2 activities is evident both in the DNS and the experimental data.
Both investigations suggest an effect out to y/h ≈ 0.2, corresponding to about 6 times
the height of the roughness elements. The local peak in Q2 observed in the DNS
for the smooth wall is reduced to a local minimum in the rough case. This near-wall
reduction is in agreement with the findings of Krogstad & Antonia (1999), who found
that the Q2 contributions for strong events (H = 2.5) virtually vanished. Hence, it
appears that the ‘very violent’ ejection events observed by Grass (1971) produce very
little shear stress. This reduction is explained by Grass as low-momentum fluid being
trapped between the roughness elements. However, both the measurements and DNS
are at variance with the results of Leonardi (2002), who found a general increase in
contributions to −uv from Q2 throughout the channel.

Figure 8(c) shows the roughness effects on Q3, frequently denoted the ‘inward inter-
action’ quadrant. The trends are the same as observed for Q1. Except for a general
reduction in contributions found in the DNS, which is not picked up in the measure-
ments, the roughness effects are very local. Again our results are not in agreement
with those of Leonardi (2002), who found a general increase in Q3 contributions
across the channel.

The roughness effects on the sweep events (Q4) are not clear from the present
results (figure 8d). The DNS data suggest a general reduction throughout most of
the layer, and only a small outward shift near the wall. This is supported by the
DNS of Leonardi (2002). The near-wall peak above the roughness element found in
his simulation is almost doubled compared to the smooth case, a result which is not
supported by the present results. In contrast to this the measurements show no outer
layer effects but a significant increase for y/h < 0.3. The experimental observation is
consistent with most measurement results available (e.g. Krogstad & Antonia 1999;
Raupach et al. 1991). However, the general conclusion drawn from figure 8(a)–(d) is
that the surface roughness impact on the outer layer turbulent structure is likely to
be stronger than suggested by a direct inspection of the stresses alone.

Because of the general diffusion of turbulent energy from the wall region to the outer
layer, Q2 must be the dominant quadrant. The contributions from this quadrant are
closely balanced by the contributions from Q4. Figure 9(a) shows the ratios between
the contributions from these two quadrants. To highlight the distributions near the
wall, the same ratio is plotted in semi-logarithmic scales in figure 9(b). In the smooth
cases the near-wall Reτ effects are evident and it is apparent that the measurements
overestimate the importance of Q2, as expected from the measured v+2 profile. In the
rough wall case the ratio drops close to 1 while the DNS remains about 20% higher
throughout most of the flow region. This increase has been verified in the DNS of
Leonardi (2002) and Nakagawa, Na & Hanratty (2003). The simulations of Leonardi
(2002) also indicate a rapid drop down to Q2/Q4 ≈ 0.7 near the top of the roughness
elements.

6.2. Reynolds stress anisotropy

There seems to be a general agreement that the surface roughness affects the turbulent
structure near the wall. However, outside the roughness sublayer, there is apparently
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Figure 9. Q2/Q4 ratios: H = 0. (a) outer variables, (b) inner variables.
Symbols as in figure 2.

little consensus on this topic. The classical theory that the turbulence structure is little
affected by the roughness in the outer layer receives support in a boundary layer
from Grass (1971) and Raupach et al. (1991). This conjecture is also corroborated for
the channel flow by the recent DNS of Miyake et al. (2000) and the particle image
velocimetry measurements of Nakagawa & Hanratty (2001). The structure functions
measured by Poggi et al. (2003) above a mesh surface in an open channel flow confirm
these findings. Ligrani & Moffat (1986) showed that there was very little variation
in the shear stress correlation coefficient, ρuv = −uv/(u2 v2)1/2, from transitionally to
fully rough boundary layer flow, indicating that the type of mechanism resulting in
the production of turbulence does not change with surface roughness. In contrast to
these findings, Krogstad & Antonia (1994) claimed that roughness tends to reduce the
overall anisotropy of the large-scale motion in a boundary layer with k-type rod rough-
ness. This was supported by the measurements of the anisotropy tensor of Shafi &
Antonia (1995) for a mesh surface and Keirsbulck et al. (2002) for a rod-type rough-
ness in a boundary layer. Djenidi, Elavarasan & Antonia (1999) investigated a bound-
ary layer with d-type square rod roughness. They found that the anisotropy invariants
had a smaller tendency towards isotropy than the mesh surface of Shafi & Antonia
(1995), indicating that the ‘interaction’ between the wall and the outer layer may be
controlled by the wall geometry. As opposed to these findings, Mazouz, Labraga &
Tournier (1988) (channel) and Sabot, Saleh & Comte-Bellot (1977) (pipe) found that
the anisotropy with k-type rod roughness was increased by the roughness, suggesting
that the flow type was important. It must be noted that in both of the latter studies
the roughness elements were larger than what was suggested by Jimenez (2004) to be
the limit for the roughness elements to not directly affect the outer flow. The evidence
from experiments and simulations is not very conclusive, and the result so far in the
present study is that the roughness effect is limited to the very near-wall region. It is
therefore of interest to investigate the influence of roughness on the anisotropy in the
outer layer in the present channel flow.

A rough guide to the large-scale anisotropy may be obtained by studying the ratios
between the various Reynolds stresses. If the flow becomes more isotropic when
surface roughness is added, the stress ratio v2/u2 (figure 10a) is expected to increase
as v+2 is increased and u+2 reduced. This is the case neither in the experiment nor in
the DNS. Except for a shift near the wall due to Reτ effects, the two cases indicate
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Figure 10. Stress ratios: (a) v2/u2, (b) v2/w2, (c) uv/v2, (d) ρuv = −uv(u2 v2)1/2.
Symbols as in figure 2.

that the stress ratio is the same for both surfaces over the entire width of the channel.
(The reason for the small discrepancies in the outer layer both in the DNS and the
measurements is so far unclear. It is not believed to be a roughness effect, since it is
hard to imagine a change in the outer layer without a significant difference near the
wall also.)

The similarity in stress ratio means that the reduction observed in u+2 in the inner
part of the flow in the rough wall channel (figure 4) is accompanied by a proportional
reduction in v+2 (figure 5). Some differences are found in the other stress ratios in the
wall region however. For the flow to be more isotropic an increase in v2/w2 towards
unity would be expected, but instead a small reduction is observed near the wall
(figure 10b), in agreement with the observation in figure 6 that the spanwise stress
w+2 is very little affected by the wall roughness.

A reduced anisotropy would also imply that the ratio −uv/v2 must be reduced
as −u+v+ has to tend towards zero and v2

+
ought to increase. For the experiments,

figure 10(c) shows that −uv/v2 is reduced near the wall in the rough case and that
this effect extends out to about y/h ≈ 0.1. From the observations about the other
stress ratios it is apparent that the reduction in −uv/v2 is mainly due to a reduction
in −u+v+. The DNS results tend to infinity near the wall, because v2 approaches zero
faster than −uv. The two quantities −uv and v2 are measures of the ‘active motion’,
hence also the ratio −uv/v2. An implication of figure 10(c) is that the ‘active’ motion
is Re-dependent at low Reτ . This is consistent with the findings of Antonia et al.
(1992) and Bakken & Krogstad (2005). As opposed to this result, the ratio between
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the ‘active’ component v2 and the ‘inactive’ component w2 (figure 10b) seems to be
less affected by Reτ .

The correlation coefficient, ρuv , is shown in figure 10(d). A wide region with a value
slightly higher than 0.4 is observed and corresponds well with earlier reported results.
A reduction in ρuv near the rough surface indicates that the anisotropy is reduced.
Outside the roughness sublayer, i.e. for 0.05 <y/h< 0.4, the DNS data indicate
a tendency towards slightly lower anisotropy over the rough wall whereas the experi-
ments display a high degree of similarity in this region. This discrepancy is probably
caused by the difference in v+2 discussed in the previous section. However, the most
apparent property of figures 10(c) and 10(d) is the Reynolds number dependence in
the central region of the profiles.

Since the stress ratios do not give conclusive information about the claimed tendency
for the flow to become more isotropic over a rough surface, a more accurate measure
for anisotropy must be used. The anisotropy tensor

bij =
uiuj

u�u�

− δij

3
(6.3)

was therefore computed for the two flows, where repeated indices means summation
and δij is the Kronecker delta function.

Two of the criteria for approximate self-similarity in the log-law region are that
the production balances the dissipation, Pk/ε ≈ 1, and that the components of bij are
essentially uniform. For the DNS data of Moser et al. (1999), Pk/ε =1 ± 0.15 for
0.05 <y/h< 0.6. Ashrafian & Andersson (2004) have shown that this is also valid for
the rod roughness for 5k < y < 0.6h. The parameter −b12 is often referred to as the
Townsend structure parameter, a1 (Townsend 1961). In two-equation models based
on the eddy viscosity, ντ , this parameter is assumed to be constant and equal to 0.15
in the logarithmic layer, which leads to the value of 0.09 for Cµ, where ντ = Cµu�u�/ε.
This assumption is valid for layers of approximate self-similarity.

The data for bij are plotted in figure 11. Inside y ≈ 5k, both the measurements
and DNS indicate that for the rough wall flow, all stresses except v2 are closer to
isotropy than in the smooth case (see b22). The effect is strongest for b33 (i.e. for w2)
where the strong near-wall peak is removed. For the other components, the effect is
small, although a fairly strong reduction right at the top of the rib is evident for b11

and −b12. The measured normal components are generally lower than those estimated
from DNS in the wall region, reflecting the inaccuracy in the measured stress
components.

In the outer layer, the collapse between the smooth and rough surface data is very
good both for the DNS and the experiments. The differences between the simulations
and the measurements are generally small. For all the normal stresses, there is a
small, but discernible Reynolds number dependence in the outer layer, leading to a
corresponding dependence in the turbulent kinetic energy (not shown). For the −b12

component the experimental data are somewhat more isotropic than the DNS. This
is believed to be a Reynolds number effect caused by the increase in the turbulent
kinetic energy with increasing Reτ . The −b12 component is the most affected, since
−u+v+ is the only stress component which must be unaffected by Reτ in the outer
region. This conjecture is also supported by the more isotropic Reτ = 590 smooth wall
DNS data compared to the results from the present Reτ = 400 smooth wall DNS.
In the central part of the profiles all the components of bij are reasonably constant,
indicating a region of approximate self-similarity. The value of −b12 is 0.14 ± 0.01 for
5k <y < 0.6h, which corresponds well with the assumption made for the two-equation
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Figure 11. The non-zero elements of the anisotropy tensor bij . Note that −b12 is shifted
downwards by 0.5 to avoid crowding. Symbols as in figure 2.

models. At the centreline, the shear stress vanishes, so −b12 is naturally zero. The other
components are still anisotropic, although less so than in the region of approximate
self-similarity.

Lumley & Newman (1976) suggested the function F = 1 + 9II + 27III as an estimate
of the overall anisotropy of the Reynolds stress tensor in the flow, where II= 1

2
bijbji =

b2
11 − b22b33 + b2

12 and III = 1
3
bijbjkbki = b33(b11 b22 − b2

12) for a two-dimensional chan-
nel flow. The range limits of F are the two-component turbulence value F = 0 and
the three-component isotropic condition F = 1. Figure 12 shows that there is a clear
Reynolds number dependence near the wall, resulting in a more isotropic flow with
increasing Reτ . The region of constant F corresponds to the range of approximate
self-similarity, indicating that the log-region is a region of constant anisotropy. There
is a clear approach towards isotropy near the centreline.

The present results deviate substantially from the boundary layer and channel flow
data compiled by Smalley et al. (2002), who compared the mesh surface boundary
layer data of Shafi & Antonia (1995), rod roughness data of Antonia & Krogstad
(2001) and the perforated plate roughness of Saddoughi & Veeravalli (1994) with the
smooth wall data of Spalart (1988) (DNS), Erm & Joubert (1991) and Smith (1994).
They found that in the outer layer (y/δ > 0.1, where y is measured from the top of
the roughness element) b11 and b22 were generally smaller in magnitude for rough
walls than over smooth surfaces, indicating a tendency for the rough walls to reduce
anisotropy. Only for rod roughness was there also a reduction in b33. This conclusion
is not supported by the present rod roughness data, where neither b11 nor b22 nor
b33 show any roughness influence in the outer layer. For the channel flow DNS data
with rod roughness on one side and varying pitch ratio (Leonardi 2002), a general
reduction in anisotropy was observed over the rough surfaces and the reduction was
markedly stronger for the k-type than for the d-type roughness. As noted in § 1, the
latter data were obtained using fairly large roughness elements (k/h= 0.1).
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Figure 12. Invariant function F = 1 + 9II + 27III. Symbols as in figure 2.

There seems to be ample evidence for the anisotropy to be dependent on the flow
type. A large majority of the boundary layer data support the theory of the anisotropy
being dependent on the specific type of roughness for a major part of the flow. The
present study is clearly challenging this conjecture for internal flows, displaying a high
degree of similarity between the smooth and rough surfaces.

7. Conclusions
Data from a rod-roughened turbulent channel flow have been compared with

corresponding data over a smooth surface using hot-wire anemometry and DNS. The
Reynolds number of the DNS is in the top end of the transitional regime, whereas
that of the experiment is in the fully rough regime. There seem to be three effects of
this difference in flow regime. First, the total flow resistance for the DNS is somewhat
influenced by viscous shear whereas only pressure-induced form drag is important for
the experiments. The value of the friction factor for the DNS is therefore slightly lower
than for the experiment. Secondly, the effect of the roughness on the mean velocity
profile, as measured by �U+, is less pronounced for the DNS than what would be
expected from the fully rough experimental results. The third effect is a higher near-
wall peak value of u+2 for the rough wall DNS than for the experiment. This is due
to a high degree of coherence in the structures near the boundary in a smooth wall
case, causing a high peak value for u+2 , whereas the break-up of these structures by
the roughness causes the peak value to decrease with increasing k+.

The similarity in the velocity defect plot suggests that there is no influence of surface
roughness in the outer region. For the Reynolds stresses, only the DNS results of v+2

display differences outside y ≈ 5k. However, the rough wall profile is attenuated in the
outer region, which is the opposite of what has been observed for a boundary layer.
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The turbulence structure seems to be somewhat more affected in the outer region
than suggested by the stresses. The results from a quadrant analysis show that the
ejections are weaker right above the roughness, probably due to low-momentum fluid
being trapped between the roughness elements. The results on the sweep type events
are somewhat ambiguous, but the experimental data support the general view that
sweeps are enhanced near a rough surface due to the reduced damping of the wall-
normal motion. The results from the anisotropy tensor support the notion of a more
isotropic flow near a rough surface. However, as opposed to recent boundary layer
results, the outer layer seems to be very little affected by the roughness.

The results from the present investigation generally support the wall similarity
hypothesis of Townsend (1976) for a channel flow. In the light of the many recent
investigations on rough wall boundary layers suggesting the opposite, it is speculated
that surface roughness effects on the outer layer may be dependent on flow type.
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